Skip to main content

Posts

300x250 Ads

Alternator Synchronous Generator | Definition and Types of Alternator

  Definition of Alternator The definition of alternator is hidden in the name of this machine itself. An alternator is such a machine which produces alternation electricity. It is a kind of generators which converts mechanical energy into alternating electrical energy. It is also known as synchronous generator. History of Alternator Michael Faraday and Hippolyte Pixii gave the very first concept of alternator . Michael Faraday designed a rotating rectangular turn of conductor inside a magnetic field to produce alternating current in the external static circuit. After that in the year of 1886 J.E.H. Gordon, designed and produced first prototype of useful model. After that Lord Kelvin and Sebastian Ferranti designed a model of 100 to 300 Hz synchronous generator. Nikola Tesla in 1891, designed a commercially useful 15 KHz generator. After this year, poly phase alternators were come into picture which can deliver currents of multiple phases. Use of Alternator The

Armature Reaction in Alternator or Synchronous Generator

Every rotating electrical machine works based on Faraday’s law. Every electrical machine requires a magnetic field and a coil (Known as armature) with a relative motion between them. In case of an alternator , we supply electricity to pole to produce magnetic field and output power is taken from the armature. Due to relative motion between field and armature, the conductor of armatures cut the flux of magnetic field and hence there would be changing flux linkage with these armature conductor. According to Faraday’s law of electromagnetic induction there would be an emf induced in the armature. Thus, as soon as the load is connected with armature terminals, there is an current flowing in the armature coil. As soon as current starts flowing through the armature conductor there is one reverse effect of this current on the main field flux of the alternator (or synchronous generator). This reverse effect is referred as armature reaction in alternator or synchronous generator . We a

Armature Winding of Alternator

Armature Winding of Alternator

Armature Winding ,Pole Pitch, Coil Span, Commutator Pitch

Now we are going to discuss about armature winding in details. Before going through this section, we should understand some basic terms related to armature winding of dc generator . Pole Pitch Definition of Pole Pitch The pole pitch is defined as peripheral distance between center of two adjacent poles in dc machine. This distance is measured in term of armature slots or armature conductor come between two adjacent pole centers. This is naturally equal to the total number of armature slots divided by number of poles in the machine. If there are 96 slots on the armature periphery and 4 numbers of poles in the machine, the numbers of armature slots come between two adjacent poles centers would be 96/4 = 24. Hence, the pole pitch of that dc machine would be 24. As it is seen that, pole pitch is equal to total numbers of armature slots divided by total numbers of poles, this can alternatively referred as armature slots per pole . Coil Span or Coil Pitch Coil of

Electrical Power Factor | Calculation & Power Factor Improvement

Electrical Power Factor In general power is the capacity to do work. In electrical domain, electrical power is the amount of electrical energy that can be transferred to some other form (heat, light etc) per unit time. Mathematically it is the product of voltage drop across the element and current flowing through it. Considering first the DC circuits, having only DC voltage sources , the inductors and capacitors behave as short circuit and open circuit respectively in steady state. Hence the entire circuit behaves as resistive circuit and the entire electrical power is dissipated in the form of heat. Here the voltage and current are in same phase and the total electrical power is given by Electrical power = Voltage across the element X Current through the element. Its unit is Watt = Joule/sec. Now coming to AC circuits, here both inductor and capacitor offer certain amount of impedance given by, The inductor stores electrical energy in the form of

Mechanical-Design-of-Overhead-Lines

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors (commonly multiples of three) suspended by towers or poles. Since most of the insulation is provided by air, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy. Towers for support of the lines are made of wood (as-grown or laminated), steel (either lattice structures or tubular poles), concrete, aluminum, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or reinforced with steel, or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and

Digital-Communication-Introduction

Without communication systems there would be no mobile phones, internet, TV or radio. Communication systems are vital to our modern society for business, personal life, entertainment and leisure. Many of us could not imagine life without such commodities. On this course you’ll gain a hands-on introduction to communications and cover a range of topics such as analogue, digital and programmable electronics. Download

Add