Skip to main content

300x250 Ads

Mechanical-Design-of-Overhead-Lines


An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors (commonly multiples of three) suspended by towers or poles. Since most of the insulation is provided by air, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.
Towers for support of the lines are made of wood (as-grown or laminated), steel (either lattice structures or tubular poles), concrete, aluminum, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or reinforced with steel, or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilient to storms, ice load, earthquakes and other potential causes of damage.[1] Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases.
  
Classification by operating voltage
Overhead power transmission lines are classified in the electrical power industry by the range of voltages:
  • Low voltage (LV) ā€“ less than 1000 volts, used for connection between a residential or small commercial customer and the utility.
  • Medium voltage (MV; distribution) ā€“ between 1000 volts (1 kV) and to 69 kV, used for distribution in urban and rural areas.
  • High voltage (HV; sub transmission less than 100 kV; subtransmission or transmission at voltage such as 115 kV and 138 kV), used for sub-transmission and transmission of bulk quantities of electric power and connection to very large consumers.
  • Extra high voltage (EHV; transmission) ā€“ over 230 kV, up to about 800 kV, used for long distance, very high power transmission.
  • Ultra high voltage (UHV) ā€“ higher than 800 kV








Comments

Popular posts from this blog

Armature Winding ,Pole Pitch, Coil Span, Commutator Pitch

Now we are going to discuss about armature winding in details. Before going through this section, we should understand some basic terms related to armature winding of dc generator . Pole Pitch Definition of Pole Pitch The pole pitch is defined as peripheral distance between center of two adjacent poles in dc machine. This distance is measured in term of armature slots or armature conductor come between two adjacent pole centers. This is naturally equal to the total number of armature slots divided by number of poles in the machine. If there are 96 slots on the armature periphery and 4 numbers of poles in the machine, the numbers of armature slots come between two adjacent poles centers would be 96/4 = 24. Hence, the pole pitch of that dc machine would be 24. As it is seen that, pole pitch is equal to total numbers of armature slots divided by total numbers of poles, this can alternatively referred as armature slots per pole . Coil Span or Coil Pitch Coil of ...

Principles of Electronics

 Principles of Electronics  By- V.K. Mehta, Rohit Mehta  

Alternator Synchronous Generator | Definition and Types of Alternator

  Definition of Alternator The definition of alternator is hidden in the name of this machine itself. An alternator is such a machine which produces alternation electricity. It is a kind of generators which converts mechanical energy into alternating electrical energy. It is also known as synchronous generator. History of Alternator Michael Faraday and Hippolyte Pixii gave the very first concept of alternator . Michael Faraday designed a rotating rectangular turn of conductor inside a magnetic field to produce alternating current in the external static circuit. After that in the year of 1886 J.E.H. Gordon, designed and produced first prototype of useful model. After that Lord Kelvin and Sebastian Ferranti designed a model of 100 to 300 Hz synchronous generator. Nikola Tesla in 1891, designed a commercially useful 15 KHz generator. After this year, poly phase alternators were come into picture which can deliver currents of multiple phases. Use of Alternator ...

Add