Skip to main content

300x250 Ads

Working Principle of Alternator


principle of alternatorThe working principle of alternator is very simple. It is just like basic principle of DC generator. It also depends upon Faraday’s law of electromagnetic induction which says the current is induced in the conductor inside a magnetic field when there is a relative motion between that conductor and the magnetic field.
For understanding working of alternator let’s think about a single rectangular turn placed in between two opposite magnetic pole as shown above.
working principle of alternator

Say this single turn loop ABCD can rotate against axis a-b. Suppose this loop starts rotating clockwise. After 90° rotation the side AB or conductor AB of the loop comes in front of S-pole and conductor CD comes in front of N-pole. At this position the tangential motion of the conductor AB is just perpendicular to the magnetic flux lines from N to S pole. Hence rate of flux cutting by the conductor AB is maximum here and for that flux cutting there will be an induced current in the conductor AB and direction of the induced current can be determined by Flemming’s right hand rule. As per this rule the direction of this current will be from A to B. At the same time conductor CD comes under N pole and here also if we apply Fleming right hand rule we will get the direction of induced current and it will be from C to D.
Now after clockwise rotation of another 90° the turn ABCD comes at vertical position as shown below. At this position tangential motion of conductor AB and CD is just parallel to the magnetic flux lines, hence there will be no flux cutting that is no current in the conductor. While the turn ABCD comes from horizontal position to vertical position, angle between flux lines and direction of motion of conductor, reduces from 90° to 0° and consequently the induced current in the turn is reduced to zero from its maximum value.

alternator principle
After another clockwise rotation of 90° the turn again come to horizontal position and here conductor AB comes under N-pole and CD comes under S-pole, and here if we again apply Flemming’s right hand rule, we will see that induced current in conductor AB, is from point B to A and induced current in the conductor CD is from D to C.
alternating  <a href= 
current generator” width=”400″ height=”250″ class=”aligncenter size-full wp-image-12759″ />
As at this position the turn comes at horizontal position from its vertical position, the current in the conductors comes to its maximum value from zero. That means current is circulating in the close turn from point B to A, from A to D, from D to C and from C to B. Just reverse of the previous horizontal position when the current was circulating as A → B → C → D → A. 

While the turn further proceeds to its vertical position the current is again reduced to zero. So if the turn continues to rotate the current in the turn continually alternate its direction. During every full revolution of the turn, the current in the turn gradually reaches to its maximum value then reduces to zero and then again it comes to its maximum value but in opposite direction and again it comes to zero. In this way the current completes one full sine wave form during each 360° revolution of the turn. So we have seen how an alternating current is produced in a turn is rotated inside a magnetic field. From this, we will now come to the actual working principle of alternator.
Now we cut the loop and connect its two ends with two slip rings and stationary brush is placed on each slip ring. If we connect two terminals of an external load with these two brushes, we will get an alternating current in the load. This is our elementary model of alternator.

alternator principle

Having understood the very basic principle of alternator, let us now have an insight into its basic operational principal of a practical alternator. During discussion of basic working of alternator, we have considered that the magnetic field is stationary and conductors (armature) is rotating. But generally in practical construction of alternator, armature conductors are stationary and field magnets rotate between them. The rotor of an alternator or a synchronous generator is mechanically coupled to the shaft or the turbine blades, which on being made to rotate at synchronous speed Ns under some mechanical force results in magnetic flux cutting of the stationary armature conductors housed on the stator. As a direct consequence of this flux cutting an induced emf and current starts to flow through the armature conductors which first flow in one direction for the first half cycle and then in the other direction for the second half cycle for each winding with a definite time lag of 120° due to the space displaced arrangement of 120° between them as shown in the figure below. This particular phenomena results in 3φ power flow out of the alternator which is then transmitted to the distribution stations for domestic and industrial uses.
3 Phase Generated Voltage

3 Phase Generated Voltage

Video Presentation of Working Principle of Alternator



Comments

Popular posts from this blog

Armature Winding ,Pole Pitch, Coil Span, Commutator Pitch

Now we are going to discuss about armature winding in details. Before going through this section, we should understand some basic terms related to armature winding of dc generator . Pole Pitch Definition of Pole Pitch The pole pitch is defined as peripheral distance between center of two adjacent poles in dc machine. This distance is measured in term of armature slots or armature conductor come between two adjacent pole centers. This is naturally equal to the total number of armature slots divided by number of poles in the machine. If there are 96 slots on the armature periphery and 4 numbers of poles in the machine, the numbers of armature slots come between two adjacent poles centers would be 96/4 = 24. Hence, the pole pitch of that dc machine would be 24. As it is seen that, pole pitch is equal to total numbers of armature slots divided by total numbers of poles, this can alternatively referred as armature slots per pole . Coil Span or Coil Pitch Coil of

Transformer

 A transformer is a static electrical device that transfers energy by inductive coupling between its winding circuits. The transformer is one of the simplest of electrical devices. Its basic design, materials, and principles have changed little over the last one hundred years, yet transformer designs and materials continue to be improved. Transformers are essential in high voltage power transmission providing an economical means of transmitting power over large distances. The simplicity, reliability, and economy of conversion of voltages by transformers was the principal factor in the selection of alternating current power transmission in the "War of Currents" in the late 1880's. In electronic circuitry, new methods of circuit design have replaced some of the applications of transformers, but electronic technology has also developed new transformer designs and applications. Transformers come in a range of sizes from a thumbnail-sized coupling transfo

Propagation-Radio-Waves

Radio Wave Propagation types

Add